

Crack growth in shot peened Al 7050 and 7075 alloys

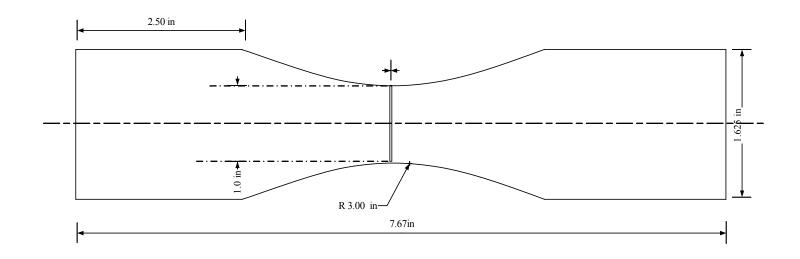
PI: James E. Locke

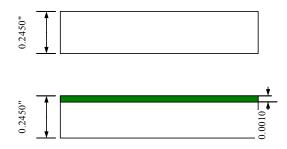
Co- PI: Brijesh Kumar

- The main objective of the research is to determine the growth rates of short cracks through the thin zone of residual stresses created as a result of surface treatments such as shot peening
 - Several specimen types were investigated
 - There is little experimental data in the open literature about fatigue crack growth in materials which are surface treated using shot peening

- Materials currently being investigated
 - 7050 T7451 (0.25 inch thick sheet)
 - 7075 T7351 (0.25 inch thick sheet)
- Specimen types currently being investigated
 - Hour-glass coupons with a surface scratch (representing a machining flaw)
 - Double edge notched specimen with an EDM notch (to be done at Dr. Forman's laboratory)

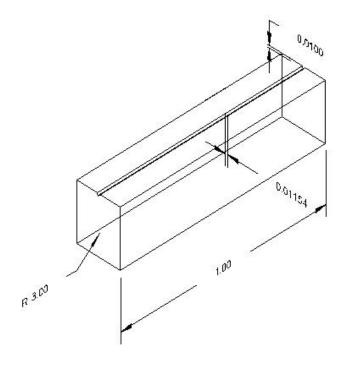
Specimen with a surface scratch


- Determine the effect of shot peening on the fatigue resistance of Al alloys with and without machine like flaws
- The following slides show the hourglass coupon with a scratch at the mid-section of the specimen
 - The second figure shows the details of the scratch
- The specimens were peened on all sides (grip region excluded)


The following measurement techniques were tried

- 1. The CMOD (measured using a laser extensometer)
- 2. Use of a stereo microscope to determine the surface crack length
- 3. Aramis photogrammetry system used to measure the strain field around the notch (scratch)
- 4. Eddy current probe was used to determine the onset of cracking
- 5. Laser Speckle method ESPI was used to monitor the displacement field around the notch

Hour-glass specimen with a surface scratch

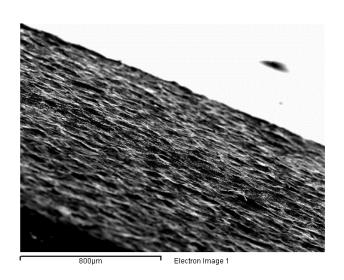


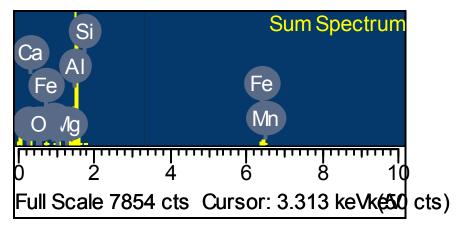
Details of the surface scratch

- Initial specimens were manufactured with a scratch of 0.01"
- Specimens with surface scratch depth of $0.0010 \sim 0.0020$ inches have been manufactured and shot peened
- Several measurement techniques were utilized

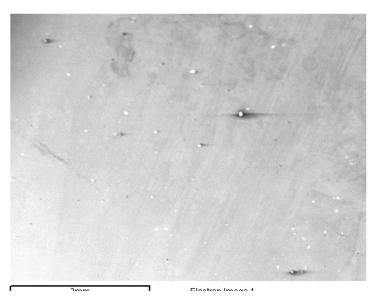
Different methods tried to detect the onset of cracking

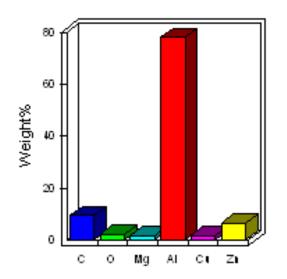
- Crack detection gages
 - Triggered after the crack had grown under the surface the crack initiations sites are not exactly at the edges
- Laser extensometer to monitor the CMOD
 - Very difficult to determine the crack growth from change in compliance and unable to resolve the cause of noise in the measurement
- Use of Aramis photogrammetry system to monitor the displacement field around the scratch
- ESPI (Laser Interferometer) method
- Use the eddy current probes to detect the onset of cracking
 - Difficult as there is presence of iron from the shot peening on the surface
- Developing a probe to measure the ACPD to monitor crack initiation and growth in the hourglass coupons

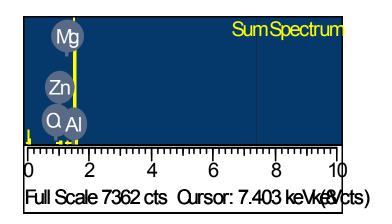

Surface Characterization


- The surfaces were examined at a magnification of 20 to 100X
- EDS analysis was conducted on the shot peened and the electro polished surfaces
 - Confirmed presence of iron residue from the shot peening process
 - The presence of the iron interferes with the eddy current probe reading causing spurious peaks making it difficult to predict the onset of cracking

EDS analysis of the surface



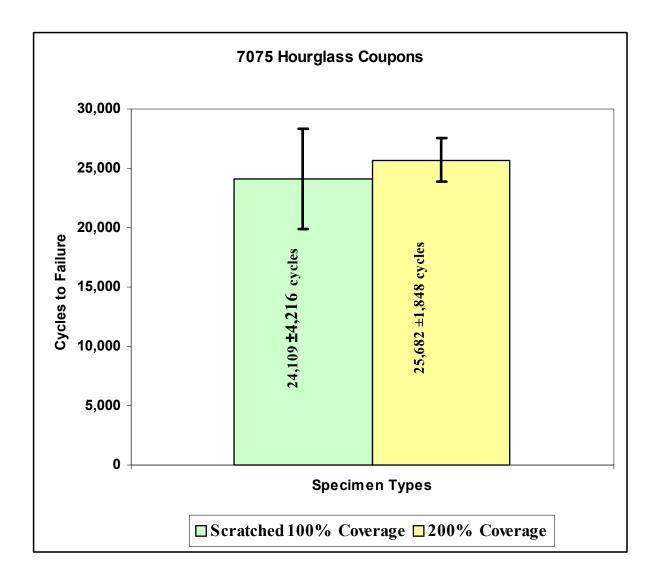

ment	Weigh	t% A1	tomic%
	C K	29.17	44.32
	ОК	25.84	29.47
	Mg K	2.10	1.58
	Al K	30.17	20.41
	Si K	0.64	0.41
	Cl K	0.18	0.09
	Ca K	0.17	0.08
	Mn K	0.19	0.06
	Fe K	7.15	2.34
	Cu K	1.18	0.34
	Zn K	3.21	0.89


Totals 100.00

Quantitative results

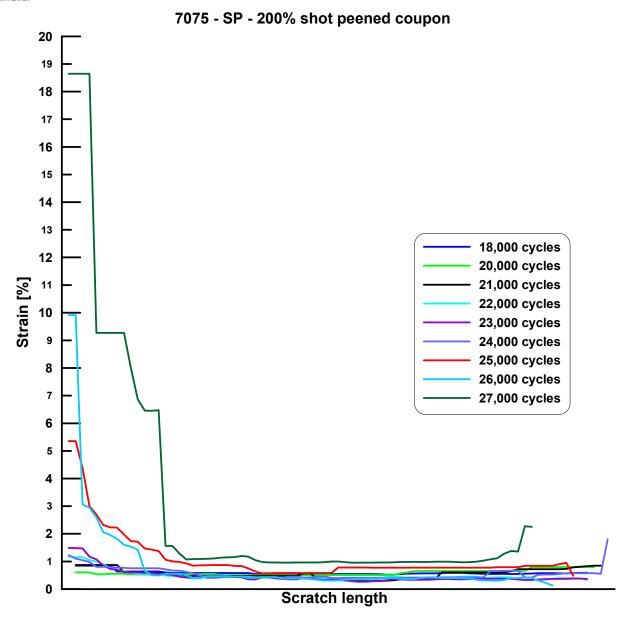
Element Weight% Atomic%

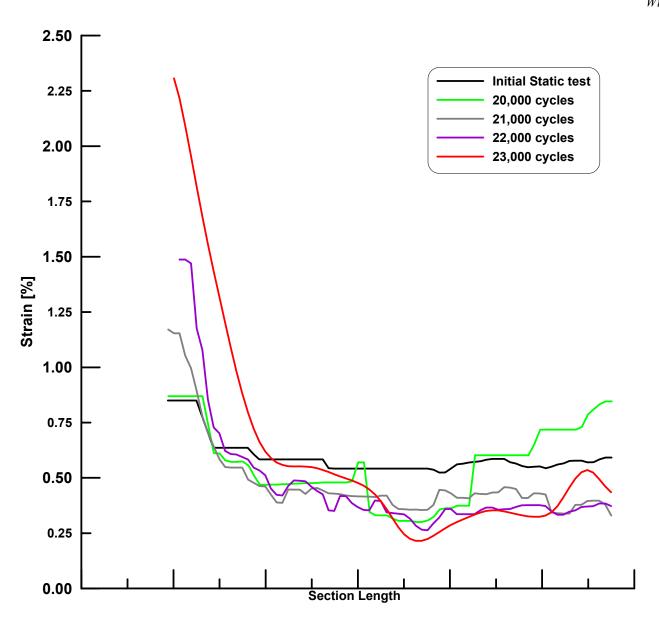
C K 9.46 19.60 O K 2.08 3.23 Mg K 1.77 1.82 Al K 78.14 72.08 Cu K 1.88 0.74 Zn K 6.66 2.54


Totals 100.00

Testing of the hourglass coupons

- Testing at Smax = 45Ksi, R = 0.5 @ 2 Hz
- Shot peened coupons failed at less than 40,000 cycles
- The pristine coupons failed at \sim 325,000 cycles (same range as in the Mil-Hdbk data for 7075 at R=0.5)
- Average Scratch depth $\sim 265 \mu m (\sim 0.01")$

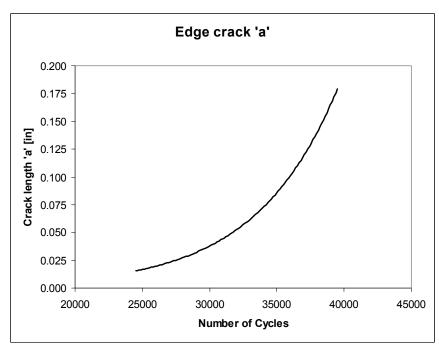


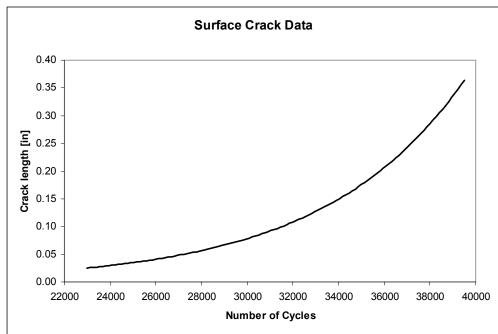


- Aramis to measure the strain field around the notch
 - Initial static test (max load of the fatigue cycle)
 - Static test run after
 - 18,000 cycles
 - 20,000 cycles and then every thousand cycles till failure

Use of the Eddy current Probe

- To determine the onset of cracking Eddy current probes were used
- The specimens were inspected before installing in the machine and then another inspection was made after loading to the maximum load of the fatigue cycle
 - Difficulty in interpreting the signal as the surface had some Fe left from the shot peening
 - The test was paused at several intervals and inspected
 - After the crack was detected the specimen was fatigued till failure
 - The specimens fractured after another 12,500 cycles

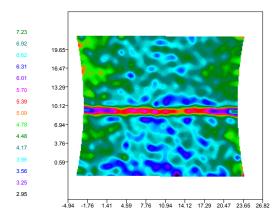



Optical Measurements

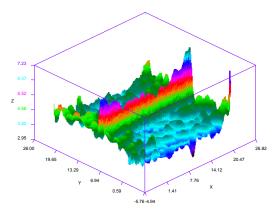
- The hourglass coupons were monitored using the optical microscope
- The stereoscope is capable of 160X resolution
- The specimens were inspected periodically and the images analyzed using image analysis software
- Once the crack was detected in the specimens, measurements were made every 1,000 cycles

Crack Length Measurements

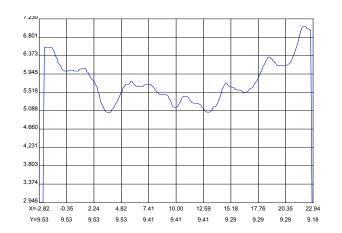
ESPI Method


- Used the Laser Speckle Interferometry to determine the displacement field around the scratch region
 - Similar to the Aramis system but with higher resolution
 - Initial reading was done at maximum load of the fatigue cycle
 - Second reading at 20,000 cycles
 - Subsequent readings at every 1,000 cycles till failure

7075–100% peening coverage

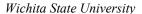

Wichita State University

Initial test



No.		Load lbf
Reference	0	64.5
Measurement	43	1.13e+004

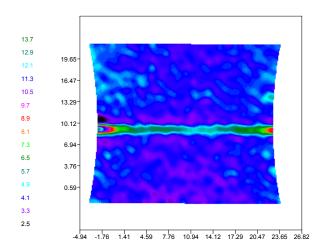
PV= 4.284 27-11-2004 15:38:43 ROTORCRAFT - FAA 7075-SP-4-100pcnt After 00000 Cycles Y-Strain-00000.TFD


No.		Load lbf
Reference	0	64.5
Measurement	43	1.13e+004

PV= 4.284 27-11-2004 15:38:43 ROTORCRAFT - FAA 7075-SP-2-200pcnt After 0 Cycles Y-Strain-00000.TFD

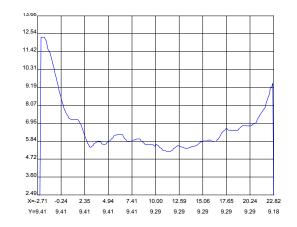
No.		Load lbf
Reference	0	64.5
Measurement	43	1.13e+004

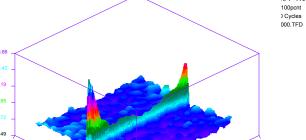
- Initial Test
- Y-strain around the notch
- Profile of the strain
- 3-D plot of the strain



Reference

0 32.2




20,000 cycles

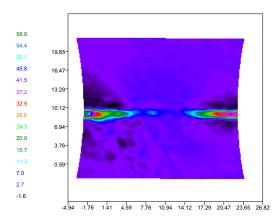
PV= 11.172 27-11-2004 15:34:00 ROTORCRAFT - FAA 7075-SP-4-100pcnt After 20000 Cycles Y-Strain-20000.TFD

No.		Load lbf
Reference	0	32.2
Measurement	41	1.13e+004

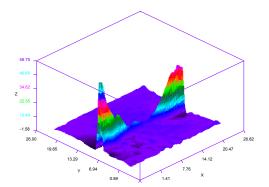
	AFT - F
	100pcn
) Cycle:
	000.TFI
	_
13.66	\rightarrow
11.42	
9.19	
6.95	
4.72	
2.49	
	_
26.00	26.82
19.65	
13.29	
19.25	
Y 6.94 7.76	
. , , , , , , , , , , , , , , , , , , ,	
0.59 1.41	
-5.76-4.94	

PV= 11.172 27-11-2004 15:34:00 ROTORCRAFT - FAA 7075-SP-4-100pcnt After 20000 Cycles Y-Strain-20000.TFD

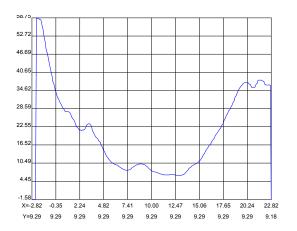
No.		Load lbf
Reference	0	32.2
Measurement	41	1.13e+004


PV= 11.172

27-11-2004 15:34:00

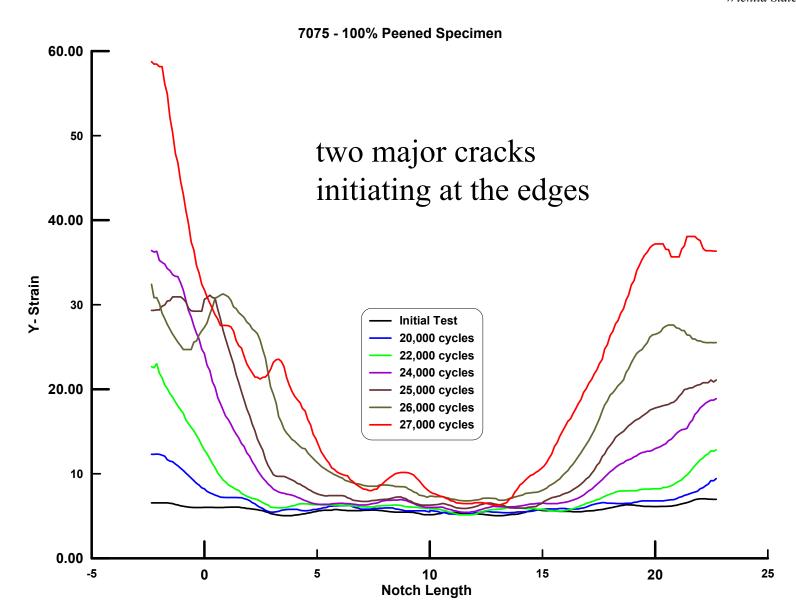


27,000 cycles


PV= 60.330 27-11-2004 17:08:47 ROTORCRAFT - FAA 7075-SP-4-100pcnt After 27000 Cycles Y-Strain-27000.TFD

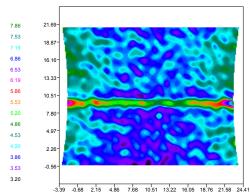
No.		Load lbf
Reference	0	32.2
Measurement	50	1.13e+004

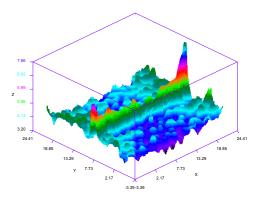
PV= 60.330 27-11-2004 17:08:47 ROTORCRAFT - FAA 7075-SP-4-100pcnt After 27000 Cycles Y-Strain-27000.TFD


No.		Load lbf
Reference	0	32.2
Measurement	50	1.13e+004

PV= 60.330 27-11-2004 17:08:47 ROTORCRAFT - FAA 7075-SP-4-100pcnt After 27000 Cycles Y-Strain-27000.TFD

No.		Load lbf
Reference	0	32.2
Measurement	50	1.13e+004





7075- 200% coverage — Initial test

PV= 4.663 28-11-2004 17:46:32 ROTORCRAFT - FAA 7075-SP-2-200pcnt After 20000 Cycles Y-fringes-20000.TFD

No.		Load lbf
Reference	0	32.2
Meacurement	26	1 1201004

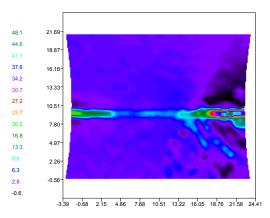
PV= 4.663 28-11-2004 17:46:32 ROTORCRAFT - FAA 7075-SP-2-200pcnt After 20000 Cycles Y-Strain-20000.TFD

No.		Load lbf
Reference	0	32.2
Measurement	36	1.13e+004

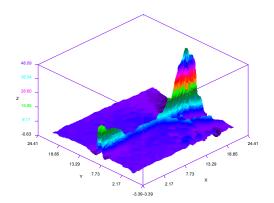
PV= 4.663 28-11-2004 17:46:32 ROTORCRAFT - FAA 7075-SP-2-200pcnt After 20000 Cycles Y-Strain-20000 TFD

No. Load lbf

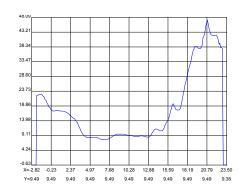
Reference 0 32.2


Measurement 36 1 13e+004

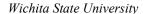
- Initial Test
- Y-strain around the notch
- Profile of the strain
- 3-D plot of the strain



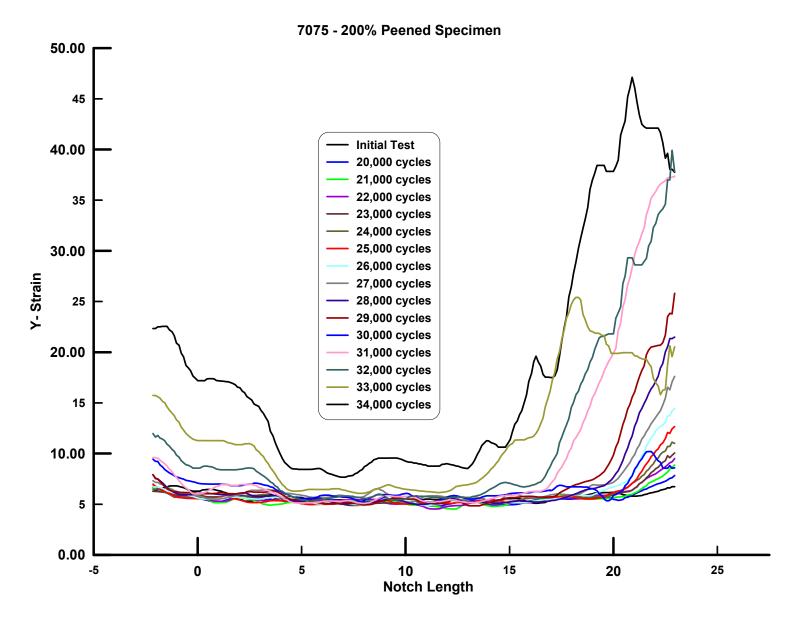
34,000 cycles


PV= 48.717 28-11-2004 20:05:14 ROTORCRAFT - FAA 7075-SP-2-200pcnt After 34000 Cycles Y-fringes-34000.TFD

No.		Load lbf
Reference	0	32.2
Measurement	41	1 13e+004

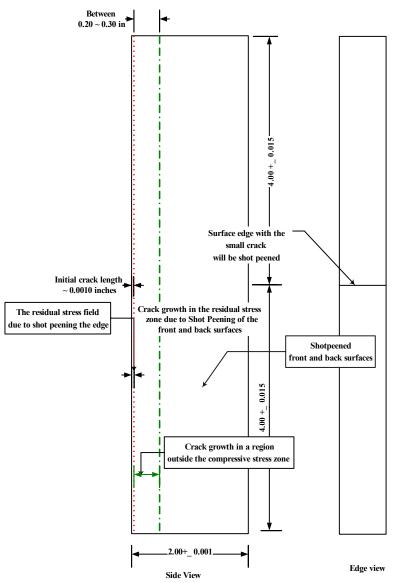

PV= 48.717 28-11-2004 20:05:14 ROTORCRAFT - FAA 7075-SP-2-200pcnt After 34000 Cycles Y-Strain-34000.TFD

No.		Load lbf
Reference	0	32.2
Measurement	41	1.13e+004



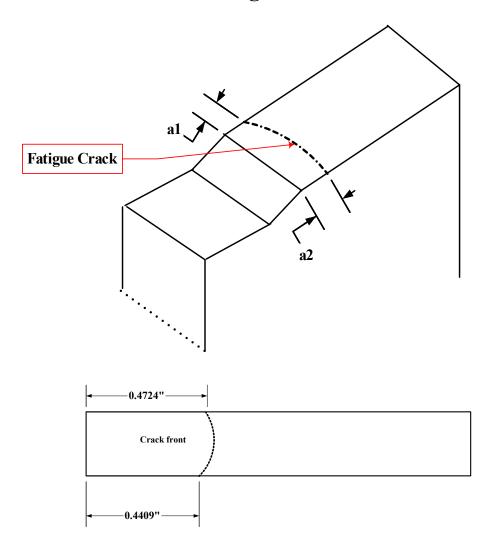
PV= 48.717 28-11-2004 20:05:14 ROTORCRAFT - FAA 7075-SP-2-200pcnt After 34000 Cycles Y-Strain-34000.TFD

No.		lbf
Reference	0	32.2
Measurement	41	1.13e+004


Initial Attempts

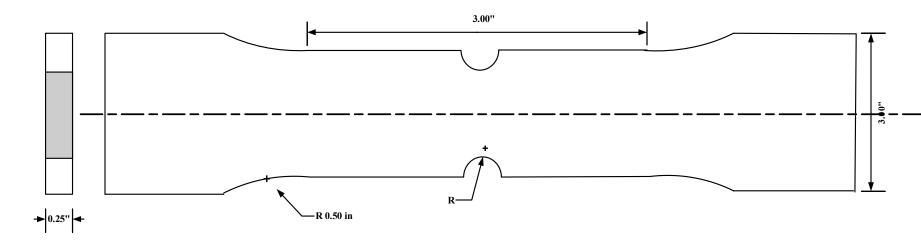
Eccentrically Loaded Single Edge Crack Coupon

- The specimen shape and dimension are shown in the following slide
- The short crack specimen was produced in two steps
 - The ESE (t) coupon was fatigued to generate a specimen of pre-determined crack size
 - Specimen was then machined by removing the material in the wake of the long crack to yield a specimen with crack length of $0.2 \sim 0.3$ mm $(0.008 \sim 0.012 \text{ inches})$
 - Initially it was planned to grow the crack to a length of 1.00 inches. It was pointed out that the compressive residual stresses would be so high that it would be difficult to open the crack after machining the wake.
 - At this point it was decided that we would grow the crack for only 0.20 inches.
 - Specimens were tested to until the crack grew for ~ 1.00 and 0.20 inches



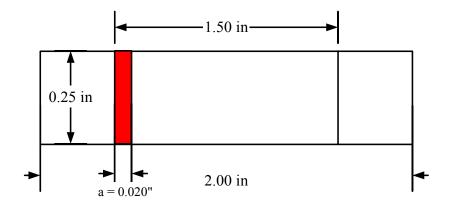
- To produce specimens with the crack embedded in the residual stress zone
 - The specimen was to be shot peened on the edge containing the crack
- To study the effect of the crack's interaction with the residual stress field
 - The same specimen can be used

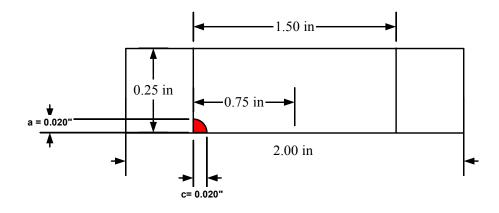
Differences in crack length on the two surfaces



Difference in the length of the crack front on the two surfaces

Specimen Number	Surface 1	Surface 2	Difference in Crack Lengths
	Crack Length [in]	Crack Length [in]	
7075ESE -05	0.54330	0.53540	0.0079
7075ESE -08	0.44090	0.47240	0.0315
7075ESE -06	0.39763	0.42125	0.0236
7075ESE -03	0.45669	0.43700	0.0197
Specimen Number	Surface 1	Surface 2	Difference in Crack Lengths
	Crack Length [in]	Crack Length [in]	
7050ESE -01	1.00400	1.00000	0.00400
7050ESE -02	0.92510	0.93300	0.00790
7050ESE -03	0.99210	0.97630	0.01580



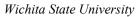

Double edge notched specimen

- The double edge notched specimens have been fabricated
- EDM notching will be conducted at Dr. Forman's facility next month
 - Notch using 0.001" diameter wire
 - 'a' = 'c' = 0.020"
 - Grow the fatigue crack and then polish the wake
- ACPD and optical measurements will be made

Through crack and Corner crack configuration

Data for UCI

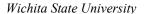
- Tension test
 - The Young's modulus
 - Poisson's ratio
 - Mass Density of the material
 - Yield Stress
 - Ultimate Tensile Stress
 - Strain corresponding to the Ultimate Tensile stress of the specimen
 - The Stress-Strain Curve for Uniaxial Tension Tests
 - The specimen shape is shown in following Figure
- Parameter's of shot peening
 - radius of the shot
 - the coverage
- Residual stress profile along the depth for both the 100% and 200% coverage in the Al alloys



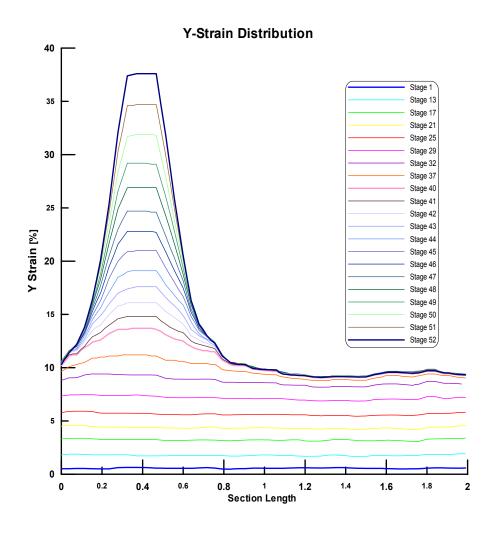
Tensile Test Data

- Tension test
 - The Young's modulus
 - Poisson's ratio
 - Yield Stress
 - Ultimate Tensile Stress
 - Strain corresponding to the Ultimate Tensile stress of the specimen
 - The Stress-Strain Curve for Uniaxial Tension Tests

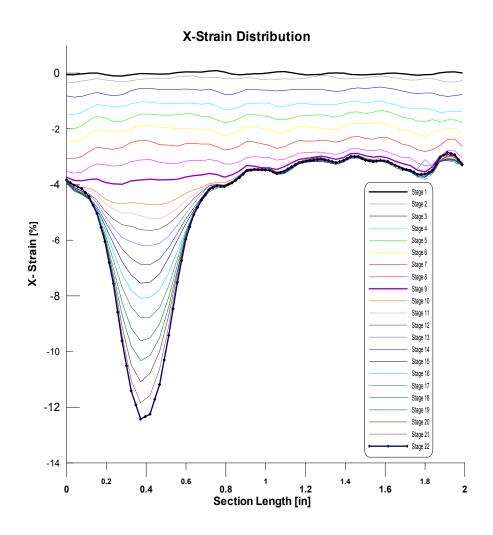
- Tensile test were monitored using the following equipment
 - Laser extensometer
 - To provide the total extension of the gage section
 - Bi-axial Extensometer
 - To determine the Poisson's ratio and axial displacement in the linear region
 - Strain gages
 - Gages capable of measuring 20% strains were used
 - 0° and 90° were used results verified with the Bi-axial extensometer

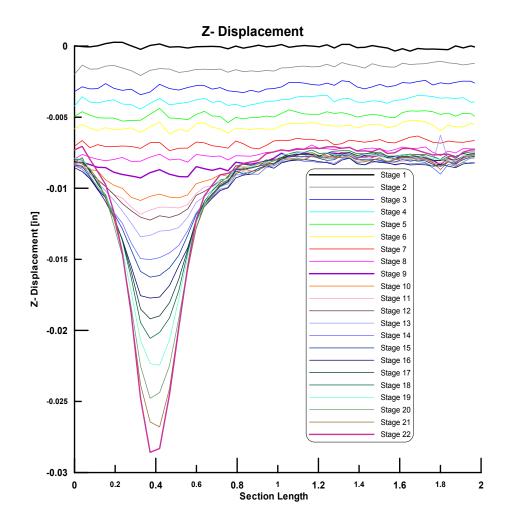

7050 T7451 Static Data

	σ _{ultimate} Ksi	σ _{failure} Ksi	E Msi	v	G Length inches	0.2% yield stress	ε %
Average	75.07	61.57	10.13	0.338	0.2937	68.69	13.6967
Standard Deviation	0.319	0.568	0.0623	0.0071	0.0152	0.444	0.7440
Coefficient of Variation	0.425	0.923	0.615	2.11	5.174	0.647	5.432


7075 T7351 Static Data

	σ _{ultimate} Ksi	σ _{failure} Ksi	E Msi	v	0.5% yield stress	ε %
Average	74.76	65.49	10.18	0.336	67.23	13.04
Standard Deviation	0.768	1.037	0.1219	0.135	0.663	0.569
Coefficient of Variation	1.028	1.583	1.198	4.018	0.986	4.363


Y-Strain using Aramis



X-Strain using Aramis

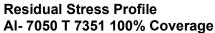
Z-displacement using Aramis

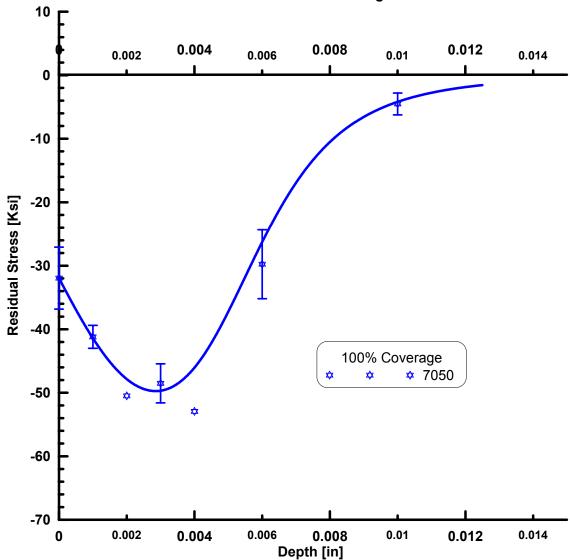
Shot Peening

- Intensity used 0.006-0.010A
 - \triangleright 0.077-0.077A (measured intensity)
- Specification AMS-S-13165
- 100% coverage and 200% coverage
- Shot Diameter $-230 R (0.0230 \pm 0.001 inches)$ Cast Steel
- Nozzle Angle $\sim 45^{\circ}$

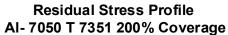
Residual Stress Measurements

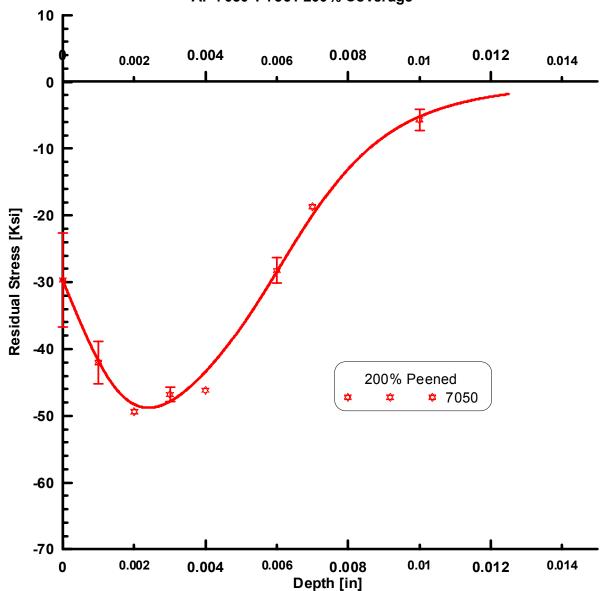
- Results of the 100% coverage Al 7050-T7451
- Total number of specimens 5
- Depths of 0.0020" 0.0040" were measured for one specimen only
- Standard deviation is a measure of variability of the measured stresses at a particular depth among different specimens
- There is an error involved with each measurement, this information is not contained in the residual stress profile plots


Depth [in]	Residual Stress [Ksi]	Std. Dev	
0.0000	-31.95	± 4.89	
0.0010	-41.19	± 1.80	
0.0020	-50.48		
0.0030	-48.52	± 3.07	
0.0040	-52.94		
0.0060	-29.75	± 5.44	
0.010	-4.52	± 1.72	



- Results of the 200% coverage Al 7050-T7451
- Total number of specimens 5
- Depths of 0.0020", 0.0040" and 0.0070" were measured for one specimen only


Depth [in]	Residual Stress [Ksi]	Std. Dev
0.0000	-29.67	± 6.98
0.0010	-42.04	± 3.15
0.0020	-49.40	
0.0030	-46.82	± 1.07
0.0040	-46.20	
0.0060	-28.26	± 1.90
0.0070	-18.70	
0.010	-5.67	± 1.62



Current Status & Future Work

- Hourglass Coupons
 - Testing of the specimens with notch depth 0.010" completed
 - With a scratch of depth $.0010 \sim 0.0020$ " will be conducted after ACPD issues worked out
- Double Notch Specimens
 - Machining of the coupons completed
 - The EDM notching will be performed
 - Replication method will be used for specimens
 - ACPD will also be used
- Tensile testing completed
 - Data generated using Aramis, Laser extensometer and bi-axial extensometer, strain gage
- Residual stress measurement completed

Acknowledgements

• Deep gratitude for the advice provided by Dr Melvin Kanninen in this effort